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equivalent circuit. Wall losses are taken into account by
perturbational methods. Total wall losses are separated
into dominant and excess losses. Dominant losses are
included in a lossy transmission-line model. Excess losses
may be neglected or incorporated by further modification
in the equivalent circuit.
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Complex Propagation Constants of Bent
Hollow Waveguides with Arbltrary
Cross Section

MITSUNOBU MIYAGI

Abstract —An integral representation of the complex propagation con-
stant 8 has been derived from Maxwell’s equations for cylindrical, hollow,
bent, oversized waveguides with uniform curvature and with arbitrary cross
sections. The method makes the calculations much simpler than the ‘con-
ventional method, i.e., the characteristic-equation method, although it has
not yet been tried for three-dimensional bent waveguides.
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I. INTRODUCTION

OLLOW WAVEGUIDES are important transmis-

sion media' for CO, laser light because they are
expected to be able to carry high power [1]. One of the
serious problems of hollow waveguides is the increased loss
due to bends. Therefore, waveguide structures with small
bending losses should be designed for the realization of a
high-powered delivery system [1]-[4].
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The coordinate system for bent waveguides with a uniform
bending radius R.

Fig. 1.

In order to evaluate bending losses in circular metallic or
dielectric hollow waveguides, a theory presented by
Marcatili and Schmeltzer [5] has been used for the past two
decades at infrared as well as submillimeter wavelengths
[6], [7]. To evaluate losses, they used a series expansion
method to evaluate field deformations and obtained the
power-attenuation constant as the ratio of P,/P,, where P,
is the power lost per unit length and P, is the power
carried by a given mode. However, as pointed out in a
previous paper [8], they didn’t consider field deformations
depending on R~? (R: bending radius), which yields
wrong bending loss formulas.

To study wave propagation in a circular metallic wave-
guide with infinite conductivity, a series expansion method
for the field deformations and the propagation constant
was also employed in the book by Lewin [9]. However, he
only mentioned that the coefficient of the propagation
constant depending on R ™! is zero, and no expression was
presented for the propagation constant depending on R ™2

On the other hand, in order to study wave propagation
in a rather general class of hollow waveguides, applicable
to oversized waveguides with finite conductivity, the con-
cept of wall impedance was introduced by Karbowiak [10]
and was used by Dragone [11], [12] and Lindell [13] for
studying oversized, arbitrarily shaped waveguides.

In this paper, the complex propagation constants of bent
oversized waveguides are studied using the wall impedance
method. The previous theory [8] has been extended to
waveguides with arbitrary cross sections and a uniform
bending radius R. When the complex propagation constant
B is approximated by 8, + 88, /R + 88, /R?, 8B, can be
evaluated from only the zeroth-order field distributions,
and 8B, can be evaluated from fields depending on R° and
R~! but not on R~2, which makes calculations extremely
simple.

II. ANALYSIS

Consider a hollow waveguide with arbitrary cross section
bent with a bending radius R as shown in Fig. 1. For
convenience, we employ a toroidal coordinate system
(r,8, z) and borrow most of results given in the previous
paper [8]. The local rectangular coordinate system (x, y, z)
and the coordinate system (», 7) perpendicular and parallel
to the hollow boundary C are also used as shown in Fig. 1.

From Maxwell’s equations in the toroidal coordinate
system, we can express E,, Ey, H,, and Hy, by E, and H,
in the hollow core region with a refractive index of »n, as

follows [7]:
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where the time and z dependences of the form exp j(w? —
Bz) are suppressed, and it is assumed that a characteristic
length of the waveguide, say the core diameter, is suffi-
ciently large, and B =ngk,. It should be noted that B
cannot be simply replaced by nyk, when the term 8 — nyk,
appears, as shown in (10). The axial field components E,
and H, can be determined from
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by substituting (1) and (2) into (5) and (6).
Expanding electric and magnetic fields E (E,, Ey, E,), H
(Hﬂ H07 Hz)7 and B as

(7
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and noticing that the denominators of (1) and (2) can be
approximated by including terms up to order R 2
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one can express E and E{ (i=0,1,2) as follows:
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where u is the transverse phase constant in the hollow
region defined by
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and T is a characteristic length, say the core radius.
Quantities with negative superscripts in (11) and (12) are
understood to be zero. In (10), it is already taken into
account that |88,|%> is much smaller than [28,88,| [14].
Equations (11) and (12) can be transformed to (see Ap-
pendix)
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Substitution of (11) and (12) into (5) and (6) leads to the
differential equations for E’ and H® (i=0,1,2) as
follows:
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where E, and H, are simply calculated by E,, E,, and
H,, H,, respectively. Equations (16) and (17) should be
integrated with the boundary conditions at C as
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where z;y and yry are the normalized surface impedance
and admittance, respectively [8].

We first mention the evaluation method of 88, by using
only E@ and HO, i.e., field distributions in the straight
waveguide.

Constructing
EMYEQ - EOv2E®

(20)

using (16) and integrating in the hollow region, one obtains
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Substituting dE®/dv and JEM/dv obtained from (14)
into (21) and using the boundary condition (19), one
obtains
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Similarly, integrating HOV?H® - HOv?H® in the
hollow region, one obtains
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By forming weyna X (22)+ wpo X (23), and using
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we arrive at
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Equation (25) shows that 88, can be evaluated from only
the zeroth-order fields EO(E®, E®, E®) and
HOHD, H®, H®), which makes the evaluation of 88,
much s1mpler compared with the conventional method
requiring the first-order perturbation terms of E® and
H®, It is clear that 88, =0 when the waveguide is sym-
metric with respect to the plane x = 0.

In the asymmetric three-layered slab waveguide, i.e.,
08, # 0, it was shown that the axial phase constant 8
should properly be described by using 88, as well as 88,
[14]. Furthermore, since we intend to extend results for the
bent circular waveguides to any waveguide, we proceed to
the evaluation of §8,.

Following a process similar to that used to obtain 88,
i.e., integrating
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in the hollow region, one obtains
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Therefore, by making weyn3 X (28)+ wpy X(29), one fi-
nally obtains the expression of 88, as follows:
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For circular waveguides, it is clear that (30) reduces to the
result obtained previously [8].

The bending losses of the waveguides, i.¢., the attenua-
tion constants « of the modes in the curved waveguides,
are simply evaluated by
(31)

m
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to the order of R™2

Finally, we mention the validity of (30) or (31). For the
electric and magnetic fields, (7) and (8), obtained by the
perturbation theory to describe the actual fields properly, it
is necessary that the bending radius R is sufficiently large
and the zeroth-order solutions E® and H® are much
larger than the first-order solutions E® and H®. For the
circular waveguides [8], the above condition leads to

R> R, (32)

where R, is defined by

HO e

(33)
and it was shown that the attenuation constant can be
properly predicted by the present method even when R
approaches R, [15]. Therefore, we can expect that the
conditions (32) and (33) are necessary for the present series
approach to be valid.
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III.

A method for evaluating the complex propagation con-
stant has been developed for oversized, bent, hollow wave-

CONCLUSION

and guides with arbitrary cross sections. The method simplifies
Y fH(O)ZdS— — 9SH<°>E<°)dc = nok [ reos— PL) gogo
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loss calculations relative to the conventional method, as
was shown for the special case of circular waveguides [8].

APPENDIX

Let the angle between » and r be ¢, one can express E,
and E, as follows:

E-(o wlE) w
For an arbitrary scalar function F, we obtain
aF L
TP ey Py AR
ar r 96
Therefore, by making
Eq. (11) Xcos ¢ — Eq. (12) Xsin¢ (A3)
Eq. (11) Xsin¢ +Eq. (12) Xcos ¢ (A4)

we finally obtain (14) and (15), respectively;
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