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equivalent circuit. Wall losses are taken into account by

perturbational methods. Total wall losses are separated

into dominant and excess losses. Dominant losses are

included in a lossy transmission-line model. Excess losses

may be neglected or incorporated by further modification

in the equivalent circuit.
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Complex Propagation Constants of Bent
Hollow Waveguides with Arbitrary

Cross Section

MITSUNOBU MIYAGI

,4bstract—An integral representation of the complex propagation con-

stant // has been derived from Maxwell’s equations for cyffndrical, hollow,

bent, oversized waveguides with uniform curvature and with arbitrary cross

sections. The method makes the calculations mnch simpler than the ‘conv-

entional method, i.e., the characteristic-equation method, although it has

not yet been tried for tbree-dimensionaf bent wavegnides.
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I. INTRODUCTION

F OLLOW WAVEGUIDES are important transmiss-

ion media for C02 laser light because they are

expected to be able to carry high power [1]. One of the
serious problems of hollow waveguides is the increased loss

due to bends, Therefore, waveguide structures with small

bending losses should be designed for the realization of a

high-powered delivery system [1]-[4].
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Fig. 1. The coordinate system for bent waveguides with a uniform

bending radius R.

In order to evaluate bending losses in circular metallic or

dielectric hollow waveguides, a theory presented by

Marcatili and Schmeltzer [5] has been used for the past two

decades at infrared as well as submillimeter wavelengths

[6], [7]. To evaluate losses, they used a series expansion

method to evaluate field deformations and obtained the

power-attenuation constant as the ratio of P1/Pz, where PI

is the power lost per unit length and P= is the power

carried by a given mode. However, as pointed out in a

previous paper [8], they didn’t consider field deformations

depending on R‘2 (R: bending radius), which yields

wrong bending loss formulas.

To study wave propagation in a circular metallic wave-

guide with infinite conductivity, a series expansion method

for the field deformations and the propagation constant

was also employed in the book by Lewin [9]. However, he

only mentioned that the coefficient of the propagation

constant depending on R – 1 is zero, and no expression was

presented for the propagation constant depending on R ‘2.

On the other hand, in order to study wave propagation

in a rather general class of hollow waveguides, applicable

to oversized waveguides with finite conductivity, the con-

cept of wall impedance was introduced by Karbowiak [10]

and was used by Dragone [11], [12] and Linden [13] for

studying oversized, arbitrarily shaped waveguides.

In this paper, the complex propagation constants of bent

oversized waveguides are studied using the wall impedance

method. The previous theory [8] has been extended to

waveguides with as-bitrary cross sections and a uniform

bending radius R. When the complex propagation constant

~ is approximated by (30+ 8&/R+ 8&/R2, 6& can be

evaluated from only the zeroth-order field distributions,

and 8~2 can be evaluated from fields depending on R 0 and

R-1 but not on R-2, which makes calculations extremely

simple.

II. ANALYSIS

Consider a hollow waveguide with arbitrary cross section

bent with a bending radius R as shown in Fig. 1. For

convenience, we employ a toroidal coordinate system

(r, 0, z) and borrow most of results given in the previous

paper [8]. The local rectangular coordinate system (x, y, z)

and the coordinate system (v, ~) perpendicular and parallel

to the hollow boundary C are also used as shown in Fig. 1.

From Maxwell’s equations in the toroidal coordinate

system, we can express E,, E@,H,, and HO by E= and Hz

in the hollow core region with a refractive index of n o as

follows [7]:

(1)

E@=–j
1

(

noko dEz r3Hz——

( )

2 r do – ‘“P” &–)
n~k~ l+~msfl –p’

(2)

noko
H,= – —E.

up o
(3)

(4)

where the time and z dependence of the form exp j( at –

~z) are suppressed, and it is assumed that a characteristic

length of the waveguide, say the core diameter, is suffi-

ciently large, and ~ = n Oko. It should be noted that B

cannot be simply replaced by n Ok. when the term 8 – n Ok.

appears, as shown in (10). The axial field components E:
and Hz can be determined from

(5)

(6)

by substituting (1) and (2) into (5) and (6).

Expanding electric and magnetic fields E (E,, E8, E=), O-U

(H,, He, H,), and 13as

E=E(0)++W+-3(’)+ . . .

HI=W+*W*W+ ...

P=Bo+&L+j+w2+”””

(7)

(8)

(9)

and noticing that the denominators of (1) and (2) can be

approximated by including terms up to order R-2

[(n~k~ 1+ ~costl )2$]-= (;)2{1-2(5$72

(
. rcosd —

%)++’(W)2[*+PW2

“( )1)($pl21
rcosd – —

F
(lo)

noko

one can express Ej’) and Ejz) (i = 0,1, 2) as follows:

nokoT 2 8f12

() ()

2
Ejl) .2 — —E$~-’)_2 ‘okOT

u noko u

“(

8&
rc0s6’ — —

)

E(i-1)

noko r

( )[

T’ aE(i) (1)
Uf.lo aH2

–j ;
‘Oko ar

_._z_ +— —

r ao 1 (11)
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nOkOT 2 8fi2

() ()
—Eji-zj _2 nOkOT

2 where z=~ and y=~ are the normalized surface impedance

E~Z) = 2 ~
nokO u and admittance, respectively [8].

“(

We first mention the evaluation method of tl~l by using
ls&

)
nokO E~’-l)rcos O——

only E(o) and H (o), i.e., field distributions in the straight

waveguide.

()[

Constructing
T 2 nOko 8E(i) aH(O

.j; ~+. ~

‘“P” & 1
(12) “ z~(1) ~ zq@)_ @I) ~ z@l) (20)

where u is the transverse phase constant in the hollow using (16) and integrating in the hollow region, one obtains

region defined by

$[
z E(o) aE(l)

aE@)

u2=(n~k~–f3~)T2 (13)
E:) 1~ dC

av z av

and T is a characteristic length, say the core radius.

Quantities with negative superscripts in (11) and (12) are /(
= 2n~k~ rcosd – —

)

8P1 E:)’ ds
noko

understood to be zero. In (10), it is already taken into

account that 18&l 2 is much smaller than 12~08~21 [14].
J

– j2noko E~O)E~O)dS. (21)
Equations (11) and (12) can be transformed to (see Ap-

pendix)
Substituting aE~O)/av and aE$l)/av obtained

into (21) and using the boundary condition

obtains

from (14)

(19), one

( )(nokoT 2 Spl
–2 — rcosd – —

)

E;L-l)

[

1
u noko dfll ~~”)’ dS -t- j—

$
E;O)H:O)dc

cocon~ 1
()[T2 aEy aH:O

_jz _
‘OkO av

+ ‘“p” ar 1 (14)
= noko

{/
r cos 0E~0)2dS

nokoT 2 8/3, E(Z_2)

()
E-o=z — —

u noko ‘

( )(

nokoT 2 8/31
–2 — rcose – —

,)

E$-l)
u noko

( )[

T2 aE(l) , aH(O
–j ; noko~

1– ‘~o%- “
(15)

Substitution of (11) and (12) into (5) and (6) leads to the

differential equations for E~’) and H~’) (i= 0,1, 2) as
follows :

()
v ZE:E) + !! 2E~i~ = 2nokot3&E~’-2)

T

(–2n~k~ rcos8 –
)

~ E~j-1) + j2nokoE~1-lJ (16)

noko

()
v 2H~i) + ~ 2H~i) = 2noko8#2H$’-2)

(
–2n~k~ rcose –

)

~ H~j-l) + j2nokoH~i-1) (1’7)

noko

Similarly, integrating ll~o) v 2H~) – H~l) v 2H$0) in the

hollow region, one obtains

[

1
Spl jH;0J2 ds – j— ~E;O)H:O) dC

up o 1

{f

1
= noko rcos 6H~0)2dS + j —

up o

where Ex and HX are simply calculated by ET, Ee, and By forming @con ~ X (22)+ @p. X (23), and using

H,, HO, respectively. Equations (16) and (17) should be

integrated with the boundary conditions at C as

+[

aH~O) ~ (o) aH(l)~jl) 1~ dC
E;o up o

a~ z a~
— = —z~ (18)
H:!) noko

!$[

H(o) aE (1) H(l) aE(0)

1
+z~–z-&dC

H$l) noko— . – _yTM

E:l) (h)po
(19) ——~[ ~ E$JH;O) – E;O)H;l)] dC = O

6’T
(24)
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we arrive at

(

z @)2+ ~pOH;0J2 ] dS
~~1 ~[~~o~o~z

# 1}
+ j [ E:O)H$Oj – E$O)H;O) dC

(J [
2 (0)’+ ~poH:)2] dS= rloko rcos6J tJcon#=

J.
+ j [ E;O)H;O)– E;O)H$) ] dS

4 1 }0 (25)+ j l_COS 8 [ E$O)H:O)– E:O)H;O) dC

Equation (25) shows that S~l can be evaluated from only

the zeroth-order fields E (“)( E~O), E!), E~O)) and
HI f“)( ~(o), IY?), H~O)), which makes the evaluation of ~~1

much ~impler compared with the conventional method

requiring the first-order perturbation terms of E(1) and

O-O(1) It is clear that 8&= O when the waveguide is sym-

metric with respect to the plane x = O.

In the asymmetric three-layered slab waveguide, i.e.,

b~l # O, it was shown that the axial phase constant ~

should properly be described by using 8~1 as well as S~2

[14]. Furthermore, since we intend to extend results for the

bent circular waveguides to any waveguide, we proceed to

the evaluation of 8~2.

Following a process similar to that used to obtain c$&,

i.e., integrating

E (o)~ 2E (2)– E9 ~ Zq(o)
z z

and

@o ~ 2&@) – @2) ~ z~$o
z

in the hollow region, one obtains

11 H:)&(o) #J
– j—

ucon~

1
+ j—

4(
rcose —

won:

~)E:O)H:O)dC}

1

4[

E(2) (3H(0Jz E (OJ aHi2)
+ 1— dC

2@Con; z dr z a~

and

(26)

(27)

(28)

Therefore, by making Ucon ~ X (28) + @p. X (29), one fi-

nally obtains the expression of 882 as follows:

+ (.qtoH;O)Hjl)] dS

J+j [EY Hz 1
(1) (0)– H;JE$O) dS

(30)

For circular waveguides, it is clear that (30) reduces to the

result obtained previously [8].

The bending losses of the waveguides, i.e., the attenua-

tion constants a of the modes in the curved waveguides,

are simply evaluated by

(31)

to the order of R ‘2.
Finally, we mention the validity of (30) or (31). For the

electric and magnetic fields, (7) and (8), obtained by the

perturbation theory to describe the actual fields properly, it

is necessary that the bending radius R is sufficiently large

and the zeroth-order solutions E(o) and u-U(o) are much

larger than the first-order solutions E(1) and U-U‘1). For the

circular waveguides [8], the above condition leads to

R>>R

where R ~ is defined by

(33)

and it was shown that the attenuation constant can be

properly predicted by the present method even when R

approaches R, [15]. Therefore, we can expect that the

conditions (32) and (33) are necessary for the present series

approach to be valid.

III. CONCLUSION

A method for evaluating the complex propagation con-.-—
stant has been developed for oversized, bent, hollow wave-

guides with arbitrary cross sections. The method simplifies

1~:)H:O)]d~-~&4(rcose-*)~:O)E:O)dc}+*+:0)%%:2)%]dc(29)+j—
0/4 o
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loss calculations relative to the conventional method, as

was shown for the special case of circular waveguides [8].

APPENDIX

Let the angle between v and r be +, one can express Ev

and ET as follows:

.(H

Cos@

)( )

– sin ~ E,

E: =
(Al)

sin + Cos@ E. -

For an arbitrary scalar function F, we obtain

[E) [-1

aF

(

eos +

)

– sin@ ifr—— (A2)
sin + Cos @ laF”——

r N3

Therefore, by making

Eq. (11) xcos@ – Eq. (12) Xsin+ (A3)

Eq. (ll)xsin+ +Eq. (12) xcos+ (A4)

we finally obtain (14) and (15), respectively.
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